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Space-Time Topology (II)—Causality, the Fourth
Stiefel–Whitney Class and Space-Time as a
Boundary

Malene Steen Nielsen Flagga1,3 and Frank Antonsen2

We show that stable causality is related to the vanishing of the top Stiefel–Whitney
class of a space-time manifold M , and that if M is a stably causal space-time manifold,
then it is the boundary of a five-dimensional space-time. We then propose a scheme for
making it both a necessary and sufficient condition.
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1. INTRODUCTION

Wormholes experienced a renewed interest after 1988. As a consequence of
Einstein’s General Relativity they pose the possibility of future space-travel and
an understanding of quantum gravity. But despite the progress they seem flawed
by their apparent ability to become time machines (Visser, 1996).

However, as professor Stephen Hawking once said, there seems to be at least
empirical evidence suggesting that the Universe obeys the chronology protection
conjecture. There are no time travellers. Antonsen and Bormann (Antonsen and
Bormann, 1995a,b; Bormann and Antonsen, 1995) have shown that quantum ef-
fects will cause a wormhole attempting to become a time machine to collapse.

This, of course, does not prove that space-time possesses such a global order-
ing of events. But how does one prove Hawking’s chronology protection conjec-
ture? There seems to be no clear agreement among physicists as to what exactly
has to be proven, in order to prove that the chronology protection conjecture holds.

Perhaps one needs to start with assumptions on the causality features of space-
time, and study the consequences. This is exactly what we have done. Our basic
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assumption is that space-time is stably causal, a feature implying the chronology
protection conjecture, and this leads to quite interesting results.

If M is indeed stably causal, it is the boundary of a five-dimensional man-
ifold, named V in subsequent sections. This is interesting in connection with
Kaluza–Klein theory, where electromagnetism and gravity are unified in exactly
five dimensions.

In Antonsen and Flagga (2002) we discussed the first two Stiefel–Whitney
classes w1 and w2 and showed how w3 was related to chirality. The starting point
was the simple observation, that space-time would only be orientable if w1 was
trivial, and only allow for fermions to exist if w2 was trivial. Since chiral fermions
exist if and only if space-time is orientable and fermions exist, and since the
vanishing of w1 and w2 leads to the vanishing of w3 it was obvious there was a
relationship.

However w4 is not trivial merely because w1, w2 and w3 are trivial. The
Steenrod Square operation and Wu’s formula, which makes w3 = 0 when w1 and
w2 are trivial, cannot be used for w4. But we can show, as we hypothesized in our
previous article, that it is related to causality, namely to stable causality.

First we review the definition of a physically reasonable space-time manifold,
mention a few new properties of this, and introduce the so-called direction-field.
Then we show, that if M is stably causal, the fourth Stiefel–Whitney class and the
Euler-class e(M) are both trivial.

Since our space-time is non-compact we then proceed to introduce coho-
mology with compact support, and show that the vanishing of the fourth Stiefel–
Whitney class leads M to be the boundary of V . Then we go on to introduce
relative cohomology, and show that if M is a boundary, then all Stiefel–Whitney
numbers of M are trivial. We then discuss the possibilities of showing, that M as
a boundary leads M to be stably causal.

2. A PHYSICALLY REASONABLE SPACETIME

In Antonsen and Flagga (2002), we already discussed the requirements for a
physically reasonable space-time, M . It is a spacetime that does not disagree with
experiments or any deeply held physical principles, such as the Standard Model
or General Relativity. While they may not be the full theories, they work within
their scopes, and so to model a spacetime, that is in accordance with observation,
this places certain restrictions on M .

We defined our spacetime M as a four-dimensional archwise connected,
smooth manifold equipped with a Lorentz signature metric (1, −1, −1, −1). The
only difference from our previous article is that we shall use Z2 as the additive
group (Z2, +).

That M has a pseudo-Riemannian (Lorentzian) metric does not only require
M to be paracompact, we also have (Visser, 1996):
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Theorem 1. A manifold M admits a Lorentzian metric if and only if it is (a)
paracompact and (b) it admits an everywhere non-vanishing continuous direction
field or M’s double cover D(M) admits an everywhere non-vanishing continuous
vector-field.

A direction field d(m) on a manifold M assigns to each point m ∈ M a pair
of equal but opposite vectors in the tangent space Tm M . That is, m → d(m) =
{Vm , −Vm}. It is therefore a nowhere-zero vector-field, that is continuous up to a
change of sign, and since M is time orientable, the field is time-like.

We can then ask, what exactly is this direction-field? It defines, continuously,
a division of nonspace-like vectors into two classes, which we label future- and
past-directed, and thereby defines a temporal orientation, making the manifold
time-orientable. The lack of continuity simply expresses, that we do not know if
M is globally causal.

Locally, however d(m) is continuous. Given m ∈ U ⊆ M , define I +(m, U )
to be the set of points m ′ ∈ M which can be reached from m by a curve such that
the tangent field V µ ∈ T U is everywhere future directed and time-like (and hence
also non-zero).

So locally we can distinguish between future and past, but globally we can
only define a division of nonspace-like vectors into the two classes, future- and
past-directed. This is the definition of time-orientability giving rise to the existence
of the time-like direction-field d(m) = {+V |m , −V |m}. A spacetime-manifold is
always locally causal, and globally so, if the direction-field is continuous.

Since our first article we have found, that we can strengthen certain properties
of M4, both topologically and homotopically. Since M is archwise connected we
do not need to specify basepoints for the homotopy groups. M4 is also not only
paracompact, it is actually strongly paracompact and finally compact. The meaning
of these, perhaps somewhat unfamiliar, terms are as follows:

Definition 1. A space M is strongly paracompact if each open cover U =
{Ui |i ∈ I } of M has a refinementU ′ so that for each m ∈ U ′ there exists an element
U ∈ U so that: ⋃

{U ′ ∈ U ′|m ∈ U ′} ⊂ U.

The set on the left hand side is the so-called star of m with respect toU ′. Strong
paracompactness then states, that this is always contained in U ∈ U (Arhangel’skii,
1995). Strongly paracompact thus means, that the sets in the cover themselves only
intersect each other a finite number of times. M4 has this stronger paracompactness
feature since it is separable. That is M contains an everywhere countable dense
subset. This is the case because M4 is paracompact and contains only one connected
component (Bredon, 1993).
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An alternative proof is to note that R is separable since it contains the rational
numbers as an everywhere countable, dense subset. Thus also finite powers of
R, Rn leads to separable spaces by the same argument. Any manifold is locally
diffeomorphic to Rn . Cover M by an atlas, then each chart U in this atlas is
separable when viewed as topological spaces in their own right. If we then denote
the everywhere dense subset of U by DU it is a countable set, since it is a subset
of Qn . Now let D = ∪U DU , which is then everywhere dense in M itself. It is
countable since we have a star-finite atlas.

But a strongly paracompact, regular space is also finally compact
(Arhangel’ skii, 1995):

Definition 2. A space M is finally compact, if each open cover of M has a
countable subcover.

So the refinement, U ′, consists only of a countable number of sets.
But M4 is not only regular (or T3), it is normal (or T4), meaning that for

every finite subcover, U ′, of M4 there exists a cover C = {V1, . . . , Vk} of M4, so
that V i ⊂ Ui , i = 1, . . . k. C is called a shrinking of U ′.

Definition 3. A space M is said to be semilocally 1-connected or locally relatively
simply connected if each point m ∈ M has a neighborhood U such that all loops
in U are homotopically trivial in M .

An archwise connected space with this property has a simply connected cov-
ering space (Bredon, 1993). A space M is semi-locally 1-connected since it is
a manifold (Greenberg and Harper, 1981). Intuitively this seems reasonable that
a manifold posses this property, since the only exception to homotopic triviality
would be those m ∈ M4 that are singularities, such as the singularity of a black
hole. The positions of the singularities are however localisable, once the black hole
is located. Their measure on M4 will be zero, since the number of black holes in
M4 is assumed finite, but of course not constant.

3. CAUSALITY AND THE FOURTH STIEFEL–WHITNEY CLASS

There exists a so-called primary obstruction class to a certain cross section
over M4. In general, if Mn is an n-dimensional manifold and if r = 2l < n then
the primary obstruction class O2l for the bundle E to posses an every-where non-
zero cross-section is equal to the 2l’th Stiefel–Whitney class (Milnor and Stasheff,
1974):

O2l = w2l , 2l < n.

If l is odd then the obstruction classes are completely determined by the
Stiefel–Whitney classes of the bundle E . When n is even, as in our case, then the
highest obstruction class can be identified with the Euler-class e(M) ∈ H n(M ; Z),
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provided that M is orientable. Or rather if E is an oriented n-plane bundle over
a CW -complex, then On(E) is equal to the Euler-class e(E). But since our M4

is paracompact it possesses a smooth triangulation and can be given the structure
of a CW -complex (Milnor and Stasheff, 1974), which is just a certain kind of
homological structure.4

We will now investigate the fourth Stiefel–Whitney class w4(M) ∈
H̆ 4(M, Z2). Like the first, second and third it is the obstruction to a certain section in
a certain bundle, and its origin is a C̆ech-cocycle, i.e. a function f4(i0, i1, i2, i3, i4) ∈
Z2 defined on Ui0 ∩ Ui1 ∩ · · · ∩ Ui4 �= ∅, such that f4 ∈ Z4(M ; Z2) = { f ∈
C4(M ; Z2)|δ f4 = 0}, and therefore defines an element w4 = [ f4] ∈ H 4(M ; Z2).

A k-plane bundle is a k-dimensional subspace of a bundle. For instance, if we
view the frame-bundle FM not as principal-bundle but as the space of vier-beins,
then the subspaces would be drei-, zwei- and ein-beins. And these span the k-plane
bundles of FM.

Theorem 2. For a k-plane bundle:

1. w1 = 0 ⇔ the vector bundle is orientable, and
2. wk is the mod 2 reduction of the Euler class, e.

For a proof see, for example (Bredon, 1993). So we see that, in our case,
w4(M) = e(M) mod 2. Both classes have the property, that if M possesses a
globally defined nowhere-zero section, then they are trivial (Milnor and Stasheff,
1974). The converse is only true for e(M) under certain circumstances, which
we will investigate in subsequent sections. So, as we already mentioned, the top
Stiefel–Whitney class is not the real obstruction when k = n the dimension of M .

These were purely topological considerations, we now proceed to study the
possible causality features of M4. One of these is the so-called strong causality
condition (SCC). If M has this feature, every m ∈ M has a neighborhood containing
a neighborhood of m not intersected by nonspace-like curves more than once
(a local causality neighborhood). If the strong causality condition holds, one can
determine the topological structure of space-time by observing causal relationships
(Hawking and Ellis, 1973).

The SCC is enough to exclude closed time-like curves on M , but not strong
enough to rule out all causal pathologies. As Hawking and Ellis point out, even
with this condition we can still have a space-time which is on the verge of vi-
olating the chronology protection conjecture, because the slightest variation of
the metric can lead to closed time-like curves. This condition is so to speak not
stable.

To be physically significant a property of space-time must have some form
of stability. That is, it should also be a property of nearby space-times. General

4 We will return to the details of the CW-complexes in subsequent sections.
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Relativity should be the limit of a theory of quantum gravity and in such a theory
the Uncertainty Principle would prevent the metric from having exact values at
every point. So if it only takes a slight variation of the metric of a strongly causal
space-time to cause closed time-like curves to exist, the Uncertainty Principle says,
they may indeed be there.

If one defines a topology on the sets of all spacetimes, a meaning to the word
“nearby” for the metric can be given. The so-called SCC holds on M , if the space-
time metric g has an open neighborhood in the C0-open topology on T 0

2(S)(M),
such that there are no closed time-like curves in any metric, belonging to that
neighborhood. In other words, it is possible to slightly expand the light-cones at
every point without introducing closed time-like curves.

A stably causal space-time is also strongly causal. And M is stably causal
if, and only if, there is a function on M whose gradient is everywhere time-like
(Hawking and Ellis, 1974). In other words, the time-like direction field is now
continuous.

Theorem 3. Let M4 be given as above. If M4 is stably causal then e(M) = 0,
w4 = 0 and χ (M) = 0.

Proof: If M is stably causal then there exists a global R-valued function fH ∈
�0(M) = F(M), with the property that its gradient is everywhere time-like. The
gradient of fH can be read off from d fH ∈ �1(M) and is the vector VH =
(∂0 fH , ∂1 fH , ∂2 fH , ∂3 fH ) ∈ X (M).

In other words (d fH )µ = gµνV ν
H . That VH is time-like means that for all

m ∈ M :

gm(VH , VH ) = gµν(m)V µ

H V ν
H > 0

In particular, VH is everywhere non-zero. This means that M has a non-zero
section in TM and then e(M) = 0 as well as w4 = 0.

The dual one-form of VH is ωνgµνV µ

H . Since VH is a global gradient field
by definition dωnu = 0, and so ∗dων = 0, it is curl-free, so χ (M) = 0 (Bass and
Witten, 1957). �

As soon as we introduce cohomology with compact support, χ (M) = 0 be-
cause e(M) = 0 by Stokes theorem.

3.1. A Note on the Euler-Class

We wish to study the classes for the tangent bundle TM of M and will use the
standard notation e(T M) = e(M). There are several points worth noting now.

In the literature there are many references to e(M), but some confusion as to
the requirements for its existence. In (Husemoller, 1994) the Euler-class is defined
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as:

e = (π∗)−1 j∗(u) ∈ H n(M ; Z)

where n is the dimension of the bundle E , π : E → M , and u is the so-called
fundamental class. For E the set E0 denotes the open subset of non-zero vectors,
and i is the inclusion j : E → (E , E0), so that j∗ : Hr (E , E0) → Hr (E). Only
when the bundle is oriented and the coefficients are integers does this class carry
the name Euler-class.

In physics, however, such as Nakahara (1990), the requirements are typically
for both the bundle to be oriented and of even dimension. When M is even-
dimensional the transition functions ti j are even dimensional matrices and therefore
their determinants possess an SO(n)-invariant square-root known as the Pfaffian
(which requires the reduction of the structure-group from O(n) to SO(n) to be
well-defined), det(ti j ) = Pf(ti j )2. Since in our case w4 is the modulo 2 reduction,
we need only define e(M) up to a sign, and use the fact that the square of e(M) is
the top Pontrjagin class p2(M) of TM. That is:

e(M) ∧ e(M) = P2(M) ∈ H 8(M ; R).

Note the abuse of notation: Both sides of the equation should be understood
as functions of a 4 × 4 matrix A and not of the curvature two-form R, since p2(R)
vanishes (Nakahara, 1990). The skew-symmetric matrix, whose determinant we
wish to calculate to get the Pfaffian, is of course related to the Riemann-curvature
tensor, but we’re interested in it here as a two-form R = 1

2 Rabθ
a ∧ θb, where {θa}

is the no-coordinate basis θa = ea
µdxµ.

This gives us that

p2(M) =
(

1

2π

)4

det R

In terms of the curvature two-form R we have:

e(M) = P f (R) = 1

32π2
εabcd Rab ∧ Rcd

Note that here the coefficients are real and not integers. That e(M) can be
written as the square of another class, translate mathematically to the following:
If we again let u denote the fundamental class and φ : Hr (M) → Hr+n(E , E0),
the expression e(M) = φ−1(u2) holds for the Euler-class (Husemoller, 1994).

4. PARACOBORDISM

We have now seen, how equipping M4 with the stable causality feature leads
to the triviality of the Euler-class and the fourth Stiefel–Whitney class. But this has
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further consequences if we use cohomology with compact support. In that case,
M4 turns out to be the boundary of a five-dimensional manifold, to be called V .

4.1. Cohomology with Compact Support

Since M4 is not compact we cannot a priori define the Poincare duality, nor
the integration of characteristic classes. However, we can utilize several properties
of M4 to define, in a coherent manner, cohomology with compact support.

First note that, as M is normal and paracompact, each locally finite cover has
a shrinking. Then any open non-empty subset of R4, and by diffeomorphism also
M4, will have a sequence of compact sets {K j } j∈N (Choquet-Bruhat et al., 1982)
so that:

k1 ⊂ K ◦
2 ⊂ K2 ⊂ · · · ⊂ K ◦

j ⊂ K j . . . ;
⋃
J∈N

K ◦
j = M

This sequence also exists for M4 if we let {Ui } be a cover of open, bounded
sets—the sets Ki = Ūi then fulfills the above requirements.

Since the interiors of the K j ’s form an open cover of M4, any compact
K ⊂ M4 will be contained in some k j from a certain j . Then the C∞

K j
(M) (functions

on M4 with support in k j ) are Frechét spaces.5

The space C∞
c (M) of functions on M with compact support in M will play

a central role in the following. We can equip this space with the inductive limit
topology by viewing it as:

C∞
c (M) =

∞⋃
j=1

C∞
K j

(M)

A sequence in C∞
c (M) is however only a Cauchy sequence if the elements

of the sequence all have compact support in a certain set K j . But if it does, then
it will converge. This space is also known as �0

c(M), the space of 0-forms with
compact support on M .

On each of the compact subsets k j of M4 we can restrict our Z-orientation to
k j . We can then use the isomorphism:

H4(M, M − k j ; Z) → �K , the set of all sections over K j (1)

to get the fundamental homology class oK ∈ H4(M, M − K j ; Z). With this singu-
lar cohomology with compact support is defined as (Greenberg and Harper, 1981):

Hr
c (M ; Z) = lim

K j compact
Hr (M, M − K j ; Z) (2)

5 A Frechét space is locally convex, metrizable, have a translation invariant metric and all Cauchy
sequences converge.
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A cohomology class ω(m) in Hr
c (M ; Z) is represented by a co-chain van-

ishing off some compact subset K , i.e. the cochain annihilates all chains with
support in M − K . This is a natural generalization to a non-compact space, as it
ensures sufficiently rapid fall-off at infinity. With this definition integrals are well
defined.

This can also be seen since C∞
c (M) is dense in both L p(M), p ∈ [1; ∞] and

the space L p, loc = { f measurable| f |K ∈ L p(K ) for K compact ⊂ M} (Choquet-
Bruhat et al., 1982).

However, only proper maps induce homomorphisms in cohomology with
compact support. If f : M → N , we must require that for L ⊂ N and compact
f −1(L) is a compact subset of M . The pullback of the inclusion map i , for instance,
is proper.

Consider now a topological space M , and let � : M → M × M be the diag-
onal map, m �→ (m, m). This induces a map in cohomology �∗ : Hr (M × M) →
Hr (M). Together with the Künneth map Hr (M) × Hr (M) → Hr+q (M × M), this
gives rise to a product on H∗(M) by composition Hr (M) × Hq (M) → Hr+q (M ×
M) → Hr+q (M), denoted by (a, b) �→ a ∪ b, a ∈ Hr , b ∈ Hq and called the cup
product. With this product, H∗(M) becomes a ring for every topological space X .

If we again let K denote a compact subset and U an open subset of M4, with
K ⊂ U , there is a diagram involving the cup-product:

Hr (M) ⊗ H 4−r (M, M − K )
cup→ H 4(M, M − K )

j∗ ⊗ 1 ↓ ↓ j∗

Hr (U ) ⊗ H 4−r (M, M − K )
cup→ H 4(U, U − K )

Note that the inclusion map i : (U, U − K ) → (M, M − K ) is an excision
which induces an isomorphism in both singular homology and cohomology theory.

Now if 〈, 〉: H∗(V ; M) ⊗ H∗(V ; M) → Z or Z2 is the canonical pairing in-
duced by the substitution pairing C∗(V , M) ⊗ C∗(V , M) → Z or Z2 then there
is a relation between the cup-product between two cochains and the cap product
between a chain and co-chain.

The cap-product is defined on as:

∩ : Hr (M) ⊗ Hq (M) → Hr−q (M)

where

u ∩ c = (1 ⊗ u)δc

with δ some diagonal approximation. If c ∈ H4(U, U − K ) and v ∈ H 1(U ) while
v ∈ H 4−k(U ) then:

〈u ∪ v , c〉 = 〈u, v ∩ c〉
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This holds for cohomology in general, so also for compactly supported cohomol-
ogy.

The cap-product has the property that if f ∈ Cr (M) then (Husemoller, 1994):

∂( f ∪ c) = δ f ∪ c + (−1)r f ∪ ∂c (3)

Using compact supported homology the homomorphism:

D : Hr
c (M) → H4−r (M)

is an isomorphism and we thusly have Poincaré duality (Greenberg and Harper,
1981). The cup product also induces, by passage to the limit, a cup-product:

Hr
c (M) × Hq

c (M) → Hr+q
c (M)

so the direct sum ⊗Hr
c (M) = H∗

c (M) becomes an R-algebra, where R is the
orientation, which does not, in our case possess a natural identity element. But it is
contravariantly functorial with respect to proper maps, that is, if f : A → B gets
mapped to H∗(A) → H∗(B) and proper maps induces homomorphisms.

We must therefore define an extension H̃∗
c to get a unital algebra, which is

one of the subjects of our current research.
Since M4 is connected the generator of H 4

c (M) corresponds to the canonical
generator H0(m) under the duality isomorphism and is the canonical class of the
Z-orientation on M4, so H 4

c (M) = Z.
However, while we have Poincaré duality we do not a priori have finite

homology groups. Only for K ⊂ M compact are the Hr (K )’s finitely generated.
Obviously we also have Poincaré duality for the compact subsets of M4. What we
do have is that since M4 is paracompact it can be embedded in R8 (Bredon, 1993)
and is thusly an Euclidean Neighborhood Retract, meaning:

H̆∗(M) = lim H∗(K j ) → H∗(M)

where K j ranges over the neighborhoods of M4 in R8.

4.2. The Stiefel–Whitney Numbers

The Stiefel–Whitney numbers of our M4 are formed using a monomial � =
wr (1)

1 . . . wr (4)
4 of degree 4 and evaluating it on the orientation class oM of M :

〈�, oM 〉 (4)

An n-dimensional manifold has one Stiefel–Whitney number for each se-
quence r (1), . . . , r (n) where n = r (1) + 2r (2) + · · · + nr (n). In our case we
would get the sequences (4, 0, 0, 0), (0, 2, 0, 0), (1, 0, 1, 0) and (0, 0, 0, 1)
(Milnor and Stasheff, 1974).
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Now, let M be stably causal and take C̆ech-cohomology with compact support
H̆r

c(M, Z2). This means that the Čech-cochains are defined on the finite intersection
of compact sets K j , where K ◦

j = U j open sets.
Since w1 = w2 = w3 = w4 = 0 all the Stiefel–Whitney numbers of our M4

are zero. That is
〈ϕ, oM 〉 = 0, (5)

which means that either � is exact or oM is a boundary. Now, ϕ is not exact, so
∃V : oM = ∂oV . Since M is paracompact and closed in the topology of V , V must
itself be paracompact and oriented. We have shown:

Theorem 4. If M4 is stably causal then M4 is the boundary of some paracompact
and oriented 5-manifold, V

5. BOUNDARIES AND CAUSALITY

We have shown that a sufficient condition for M4 to be the boundary of V ,
is that M4 is stably causal and equipped with cohomology with compact support.
But is this a necessary condition? Can we show, that simply by assuming that M
is a boundary of a five-dimensional manifold, then it must necessarily be stably
causal? A priori we know nothing of this five-dimensional manifold V , save that
its boundary is M4. What is its topological and geometrical properties, and what
is this fifth dimension, which we cannot see nor interact with?

Assume V is paracompact, archwise connected and oriented, that M4 = ∂V
and that both spaces have cohomology with compact support. We can then study
what is known as relative cohomology of M4 ⊂ V . In the following section we
will review a few fundamental results and discuss them in our case.

5.1. Relative Cohomology

In the following i : M ↪→ V , denotes the inclusion, i∗ : Hr (V ) → Hr (M),
and i∗

M : H5(V , V − M) → �c M = C∞
c (M). However, since M is a connected

and non-compact subset of V , H5(V , V − M) = 0 (Greenberg and Harper, 1981).
Note that also i∗

V : H5(V )
∼→ C∞

c (V ) and that Hr (V ) = 0 for r > 5. We also have
that Hr (V , V − M) = 0 for r > 5 and H5(V ) = 0. For the pair (V , M) there is
also the so-called connecting morphism (Greenberg and Harper, 1981):

δ : Hr (M) → Hr+1(V , M)

Consider now the diagram on the co-chain level:

0 → Cr (V , M) → Cr (V )
i∗→ Cr (M) → 0

↓ δ ↓ δ ↓ δ

0 → Cr+1(V , M) → Cr+1(V ) → Cr+1(M) → 0
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If u is a cochain on V , u ∈ Hr (V ), such that i∗(u) is a cocycle on M , which
represents a cohomology class ū ∈ Hr (M). Since i∗(u) is a cocycle, δ(i∗u) =
i∗(δu) = 0, δu is a relative (r + 1)-cocycle on the pair (V , M) and therefore
represents a cohomology class (δu) ∈ Hr+1(M, V ). This class is independent of
the choice of u, so δū = δu.

Thus, we have the exact cohomology sequence (Greenberg and Harper, 1981):

0 → H 0(V , M) → · · · → Hr (V )
i∗→ Hr (M)

δ→ Hr (V , M) → · · · .
When M is the boundary of V we have that M is oriented. Because on V , a

manifold with M as boundary, Stoke’s Theorem is valid (Bredon, 1993). If we have
a boundary point v we can take a system of local coordinates {x0, . . . , x4} such
that V is given by x4 ≤ 0 and {x0, . . . x3} form local coordinates for the boundary.
We can takes these coordinates to define an orientation on the boundary, ∂V = M .

This means that if oV ∈ H5(V , M) is the Z2 orientation on V relative to M(V
is orientable along M) a homeomorphism φ : π−1(M) → M × Z exists, and the
diagram:

π−1(M)
φ→ M × Z

↘ ↙
M

(6)

commutes.
If ω denotes a four-form on V with compact support, then i∗ω is a four-form

on M , Stoke’s theorem states that:∫
V

dω =
∫

M
ω (7)

The cap-product, which is the Poincaré duality, also exists for relative cohomology,
yielding (Bredon, 1993)

∩ : Hr (V ) ⊗ H5(V , M) → H5−r (V .M)

and

∩ : Hr (V , M) ⊗ H4(V , M) → H5−r (V )

And generally, since M is the boundary of V :

Hr (V , M) # H 5−r (V ) and Hr (V ) # H 5−r (V , M)

Letting oV in H5(V .M) denote the Z2-orientation on V , ∂oV = oM ∈ H4(M)
will be the Z2-orientation of M . Equation (7) can then be written in compact form
for the 4-form ω on V :

〈dω, oV 〉V = 〈ω, oM 〉M (8)
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The period of a closed r -form ω over a cycle c is generally defined as 〈ω, c〉.
This period vanishes if ω is exact or if c is a boundary. So obviously, if M = ∂V ,
then 〈ω, oM 〉 = 0 since oM is a boundary.

Theorem 5. Let M be as above, so that M = ∂V . Then all the Stiefel–Whitney
numbers of M are zero.

Proof: Let oV be the Z2-orientation class of V , where we have that oV ∈
H5(V , M). Then we have that ∂oV = oM ∈ H4(M) is the orientation class on
M . For the monomial � = wr (1)

1 wr (2)
2 wr (3)

3 wr (4)
4 , Stoke tells us that:

〈δ�, oV 〉 = 〈�, oM 〉 (9)

We have that T VM = T M ⊕ L1, so i∗(wr (T V )) = wr (T M) = wr (M). In
the exact sequence:

H 4(V )
i∗→ H 4(M)

δ→ H 5(V , M)

we have that δi∗ = 0, as we saw above, so δ� = 0. This means that 〈δ�, oV 〉 = 0
for all choices of 4 = r (1) + 2r (2) + 3r (3) + 4r (4) and all the Stiefel–Whitney
numbers of M are zero. �

6. CONCLUSION

We have seen, that all four Stiefel–Whitney classes, which are elements
of the Čech-cohomology, have physical significance. The relationship between
global causality, the fourth Stiefel–Whitney class and M as a boundary of a five-
dimensional manifold concludes this. This is interesting in the current discussion
on how many dimensions our universe really has.

We were able to show that a stably causal manifold has w4 = 0. We also
showed that such a manifold was the boundary of a five-manifold. This, however
is not enough to ensure that w4 is itself trivial. All we know, is that 〈w4, oM 〉 = 0.
What we need is for this to give us a no-where zero time-like vector field, which
is the gradient of a globally defined function. To get such a function, we need
the Euler class to vanish, e(M) = 0, since this would lead to the existence of a
nowhere-zero section over all of M . This section must then be shown to be time-
like and finally a global gradient field. Since w2 = 0, M is parallelizable and there
is a diffeomorphism f : T M → M × R4 such that each Tm M is carried linearly
isomorphically onto {m} × R4. TM is therefore isomorphic to the trivial 4-plane
bundle leading to the following theorem (Bredon, 1993):

Theorem 6. If E is en orientable n-plane bundle over the n-dimensional complex
M then E has a nonzero-section if and only if 0 = e ∈ H n(M).
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We are currently working on using this theorem, together with imposing a
causal structure on the cohomology modules induced by the causal structure on M ,
to try to show that a vanishing top Stiefel–Whitney class ensures stable causality.

In the early 1920s, Kaluza and Klein introduced a fifth dimension, which
is curved by electromagnetic potentials. Their ideas were based on the follow-
ing analogy: in general relativity, distances depend locally on the gravitational
potential; one might therefore imagine new dimensions such that the generalized
distance depends also on the electromagnetic potential. This may lead to a unified
theory of gravity and electromagnetism. This idea has been revived later in the
context of string-theory, where, however, the extra spatial dimensions are believed
to be compact and microscopic. The fifth dimension in this paper, related to stable
causality, is macroscopic however, and therefore more in line with Kaluza and
Kleins original ideas, where the fifth dimension, although small, was not neces-
sarily of Planck scale size. But, in a sense, the five-manifold appearing here is
completely different, “orthogonal” even, to the Kaluza-Klein or superstring theory
extra dimensions—it is not compactified, and physical four-dimensional spacetime
arises as the boundary. This opens up a lot of questions as to the physical effects
of such a hypothetical extra dimension.
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